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Appendixes 

A-1 The Reason Why Infinite Bus Can Be Assumed 

In most power system analyses, smaller part is represented by 1 machine and 1 load, and larger part is 

represented as infinite bus. Larger part never has infinite size. While, how large part can be regarded as 

infinite bus? Since no references were found, the author ties and introduces. Oscillatory instability, which 

needs most complex analysis, is taken as example. Oscillatory instability appears as power swing between 

two generator groups in a large interconnection. Therefore, the simplest model of the phenomenon is made 

of 2 machines and 2 loads as shown in A-Fig. 1.1. So as to manual calculation is available, generators are 

represented as voltage source behind transient reactance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model for inter area oscillation is shown in A-Fig. 1.1, which is conducted by procedure as follows.  

1. Perform modal analysis or time domain simulation on detailed system.  

2. Divide generators into two groups having opposite swing vectors.  

3. Select locus buses on power swing and join those buses. 

4. Make two aggregated system seen from jointed locus buses.  

In A-Fig. 1.2, values of active and reactive power are expressed by node voltages and its phase angles. 

(for i = 1, 2) 

 

 

 

 

 

Voltage sensitivities of load’s active and reactive power are assumed as follows.  
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A-Fig. 1.1 Structure of inter area oscillation 
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A-Fig. 1.2 Analysis model for inter area oscillation 
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Small deviations around operating point are taken as variables. Equation (A-1.3) is conducted from 

active and reactive power balance.  

 

 

 

Substituting (A-1.1) and (A-1.2) into (A-1.3), i and Vi are expresses as functions of i and Ei as 

equation (A-1.4).  

 

 

 

 

 

 

Using (A-1.1), (A-1.2), and (A-1.3), Pi and Vi are expresses as functions of 1 2 as equation 

(A-1.5). Here, it must be noted that Bi1 + Bi2 = 0, therefore, Pi and Vi are expressed as functions of 1 

2 .      

 

 

 

 

 

Sum of generator capacity of group i is P0i . Unit inertia constant of each generator is assumed as equal. 

Thus, swing equations of the two groups are expressed as follows.  

 

 

 

Making difference of the two equations in (A-1.6), united equation is conducted as follows.  

 

 

 

From (A-1.4), (A-1.5), and (A-1.7), A-Fig. 1.3 is conducted. Here, Fi(s) means average excitation 

system gain of generators in group i . Coefficients Kij are calculated as follows.  

 

 

 

 

 

Pg1 – P1 – Pe = 0 ,  Qg1 – Q1 – Qe1 = 0 

Pg2 – P2 + Pe = 0 ,  Qg2 – Q2 + Qe2 = 0 

Pi = Pi0 Vi
,  Qi = Qi0 Vi


     (for i=1,2)      (A-1.2) 

(A-1.3) 
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(Ms2 + Ds)           = –       +                       (A-1.7) 
1 – 2 

w0 
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P02 

(Ms2 + Ds)     = –       ,  (Ms2 + Ds)     = –           (A-1.6) 
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By A-Fig. 1.3, damping torque is calculated as follows. Since K11 is a real number, it never contribute 

damping. E1 and E2 are calculated as follows.  

 

 

 

 

Therefore, synchronizing torque Si and damping torque Di through excitation system are calculated as 

follows (for i = 1, 2). Here, C is the matrix in left side of equation (A-1.9).  

 

 

 

 

Total damping torque of both groups D12 is sum of D1 and D2 shown as follows.   

 

 

 [ Generator Capacity Ratio of the two groups is 2:3 ]  Damping by tie line flow is shown in A-Fig. 

1.4. Tie line flow is adjusted by varying load amount. Constants are shown as follows.  

X1 = 0.225 ,  Xe = 1.0 ,  X2 = 0.15 ,  E1 = V1 = V2 = E2 = 1.0 ,  

Pg1 = 2 ,  Pg2 = 3 ,  P01 = 2 ,  P02 = 3 ,   = 1 ,   = 2 ,  P1 + P2 = 5,  

AVR : G = 30 ,  T = 0.3 秒 ,  swing speed : s = 2 * 0.5Hz 

A-Fig. 1.4 shows a slight asymmetry due to capacity asymmetry. As the result, total damping D12 takes 

large negative value as much power flows from group 1 (smaller) to group 2 (larger). Although capacity 

asymmetry is so light as 2:3, smaller group 1 shows ill damping (D1), and spoils oscillatory stability of the 

interconnection very much.  

1/F1(s) + B23  B34 

 

B43  1/F2(s) + B44 

E1/E1

 

E2/E2

=          (1 – 2)     (A-1.9) 
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A-Fig. 1.3 Block diagram for calculating damping torque 
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 

D12 = D1 + D2                       (A-1.11) 
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[ Generator Capacity Ratio of the two groups is 1:4 ]  Damping by tie line flow is shown in A-Fig. 

1.5. Tie line flow is adjusted by varying load amount. Constants are shown as follows.  

X1 = 0.45 ,  Xe = 2.0 ,  X2 = 0.1125 ,  E1 = V1 = V2 = E2 = 1.0 ,  

Pg1 = 1 ,  Pg2 = 4 ,  P01 = 1 ,  P02 = 4 ,   = 1 ,   = 2 ,  P1 + P2 = 5 ,  

AVR : G = 30 ,  T = 0.3 秒 ,  swing speed : s = 2 * 0.5Hz 

A-Fig. 1.5 shows more remarkable asymmetry than A-Fig. 1.4 due to remarkable capacity asymmetry. 

Group 2 damping (D2) hardly changes by tie-line flow, and as the result, total damping D12 is almost equal 

to group 1 damping (D1). Oscillatory stability of the total interconnection is decided by only smaller group 

1, and as the result, larger group 2 can be regarded as infinite bus. Therefore, 1 machine, 1 load, and infinite 

bus model is evaluated as an adequate model.    

 

 

 

 

 

 

 

 

 

 

 

A-Fig. 1.4 Damping by tie-line flow (Cap. 2:3) 

A-Fig. 1.5 Damping by tie-line flow (Cap. 1.4) 
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A-2 Fundamental Equations of Synchronous Machine 

In case of transient stability, generator can be simply regarded as voltage source behind transient 

reactance. However in case of oscillatory stability, field winding must be modeled. Damper windings can 

be considered as damping D. Park model that is most commonly adopted considers damper windings, but 

ignores magnetic flux linking any two of armature, field, and damper windings. The ignorance is not 

verified yet. Synchronous machine model considering field winding and ignoring damper windings is 

minutely introduced by Kimbark, but in the last step, careful explanation conducting “Fundamental 

Equation” is omitted. The appendix will fulfill the flaw.  

[ Direct Axis and Quadrature Axis ]  Synchronous machine has magnetic pole, which induction 

machine does not have, and character is much different on pole direction (direct axis) and its cross direction 

(quadrature axis). Quadrature axis is not affected by field, and its constants are different from direct axis 

constants, especially in salient pole machine. The two axes must be modeled independently.  

Voltage, current, and magnetic flux linkage are defined as vector as follows.  

 

 

 

 

 

If our viewpoint is fixed on armature (stator), since magnetic pole is rotating, inductance in each a, b, c 

phase becomes functions of pole position . Although we want to knowledge of electric circuit, such 

inductance varying by  brings a considerable difficulty in calculation. On the contrary, if our viewpoint is 

fixed on magnetic pole (rotor), direct and quadrature axis reactance becomes constant no matter what pole 

position  is. The coordinates-axis transform is called as “Park’s equation” by giving him credit for being 

the pioneer.  

[ Transformer- and Speed- Electromotive Force ]  According to Faraday’s electromagnetic 

induction law, time variation of magnetic flux linking coil induces voltage in the coil. Another word, time 

variation of current I in coil with inductance L induces electromotive force V in the coil. Since magnetic 

flux linkage is  = L I, the electromotive force is expressed as follows.  

 

 

 

However, it is careless to regard time differential of (A-2.3) as electromotive force. The fact that 

coordinates-axis is rotating is forgotten. The rotation can be considered by multiplying ejθ as rotation. Thus, 

relation of flux linkage and voltage is expressed as follows. Laplace’s operator s is used as time differential 

hereafter. 

 

 

 

 

Vt = Vd + j Vq                        (A-2.1) 

I = Id + j Iq                          (A-2.2) 

 = d + j q                         (A-2.3) 

V = L         or      V =                              (A-2.3) 
d I

d t

d 

d t

(Vd + jVq) ej = s{(d + jq) ej} = s (d + jq) ej + j(d + jq) ej s 

Vd = sd – q s                                          (A-2.4) 

Vq = sq + d s                                          (A-2.5) 

∴ 
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The first term in right side of (A-2.4) and (A-2.5) appears when machine is not rotating, and is called as 

“transformer electromotive force”. The second term appears by magnetic pole rotation, and is called as 

“speed electromotive force”. The latter is far larger than the former. Therefore in many cases, electromotive 

force is simply expressed as follows.  

 

 

 

 [ Equivalent Circuit ]  Usually, direct axis of synchronous machine is expressed equivalent circuit 

as A-Fig. 2.1. Field and armature is magnetically combined and have mutual inductance Lmd and its flux 

md. Some of flux made by field current does not link armature and forms leakage flux ℓfd . Samely some 

of flux made by direct axis current Id forms leakage flux ℓd . On the contrary of rotor, since armature 

(stator) is symmetrically built, leakage inductance is not different in direct and quadrature axis. Since the 

equivalent circuit is seen from viewpoint on rotating pole, armature flux, voltage, and current are seen as 

direct current from the viewpoint.  

 

 

 

 

 

 

 

 

 

 Flux linkages, which are product of inductance and current, are expressed as follows.  

 

 

 

 

 

Minus sign on Id means that machine is regard as generator, in which power flow direction toward outside 

is expressed positive.   

 Armature’s direct axis linkage flux d is sum of ℓ and md , and is expressed as follows.    

 

 

While, direct axis synchronous reactance is expressed as follows.  

 

 

Therefore, direct axis flux linkage is expressed as follows.  

 

Vd = – q s                                              (A-2.4’) 

Vq =  d s                                              (A-2.5’) 

md

ℓd ℓfd 

Lmd

Lℓfd Lℓ 

Rfd 

If Id 

Armature                      Field 

A-Fig. 2.1 Equivalent circuit of direct axis 

Efd 

md = Lmd (If – Id)  

fd = Lfd If  

ℓ = – Lℓ Id  

d = ℓ + md = – Lℓ Id + Lmd (If – Id)  

Ld = Lmd + Lℓ  
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Quadrature axis is not affected by field, and is expressed as follows.  

 

 

 Flux linking to field winding fd is sum of ℓfd and md , and is expressed as follows.      

 

 

Open circuit inductance of field circuit is expressed as follows.  

 

 

Therefore, flux linking to field winding also can be expresses as follows.  

 

 

 Field voltage Efd is sum of voltage drop through field resistance Rfd and time variation of field flux 

linkage, and is expressed as follows.    

 

 

 [ Equations of Current and Flux ]  Here, per unit method is introduced. As bases, following terms 

are convenient for calculation.  

As terminal voltage,    rated terminal voltage          Vt0  

As armature current,    rated current              I0  

As rotating speed,      rated rotating speed           0  

As field current,       current at no load and rated voltage     If0  

As field voltage,       voltage at no load and rated voltage    Efd0  

As armature flux,      direct axis flux at no load and rated voltage  Yd0  

At no load, Iq = 0, therefore, quadrature axis flux is also zero.  

At no load, rated speed, and rated voltage, relations on flux, voltage, and current are expressed as follows.  

 

 

(Remark) While d0 = ℓ0 + md0 , Id0 = 0 results ℓ0 = 0.       

 

 

 

 

Dividing (A-2.6) by (付 2.10), equation as follows are conducted.  

 

 

 

d = Lmd If – Ld Id                                    (A-2.6) 

q = – Lq Iq                                         (A-2.7) 

fd = Lℓfd If + Lmd (If – Id)  

Lfd = Lℓfd + Lmd  

fd = Lfd If  Lmd Id                  (A-2.8) 

Efd = Rfd If  sfd                     (A-2.9) 

Vt0/0 = d0 = md0 = Lmd If0                (A-2.10) 

fd0 = Lfd If0                              (A-2.11) 

Efd0 = Rfd If0 = Rfd fd0/Lfd                         (A-2.12) 

=       =        =    =       *           (A-2.13) 
d 

d0 

Lmd If 

Lmd If0 

Ld Id 

Vt0/0 

If 

If0

0 Ld

Vt0/I0

Id

I0
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Here, sinced/d0  means direct axis flux linkage in per unit         d , 

If/If0    means field current in per unit                  if , 

Id/I0    means direct axis current in per unit              id 

 

and                    means direct axis synchronous reactance         xd  

 

therefore, equation (A-2.13) can also be expressed as follows.  

 

 

 Dividing (A-2.7) by (A-2.10), equation as follows is obtained.  

 

 

 

Here, since   q/d0  means quadrature axis flux linkage in per unit        ψq , 

Iq/I0    means quadrature axis current in per unit            iq , 

 

and                     means quadrature axis synchronous reactance in per unit  xq , 

 

therefore, equation (A-2.15) can also be expressed as follows.  

 

 

 Dividing (A-2.8) by (A-2.10), wquation as follows is obtained.  

 

 

 

Here, considering 

 

                                     , 

 

equation (A-2.17) can also be expressed as follows.   

 

 

 

 

 

Direct axis transient reactance Ld’ can be expressed as follows.  

 

 

 

0 Ld 

Vt0/0 

d = if – xd id                                    (A-2.14) 

=         =        *                     (A-2.15) 
q 

d0 

Lq Iq 

Vt0/0 

0 Lq

Vt0/I0

Iq

I0

0 Lq 

Vt0/I0 

q = – xq iq                                      (A-2.16) 

=         –                             (A-2.17) 
fd 

md0 

Lfd If 

Lmd If0 

Lmd Id

Vt0/0

If0 =        =    
md0 

Lmd 

fd0 

Lfd 

=        =    
fd Lfd 

Ld0 Lmd

Lfd If 

Lmd If0 

Lmd Id

Vt0/0

∴         =     –                                  (A-2.18) 
fd 

fd0 

If 

If0 

0 Lmd
2 Id

 Lfd Vt0 

Ld’ = Lℓ +           
 Lmd Lℓfd 

Lmd + Lℓfd 
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Substituting (A-2.19) to (A-2.18), equation as follows is obtained.  

 

 

 

 

Here, since         means field flux linkage in per unit         fd , 

 

means field current in per unit           if , 

 

means direct axis synchronous reactance in per unit  xd , 

 

 

and                     means direct axis transient reactance in per unit     xd’  

 

therefore, equation (A-2.20) can also be expressed as follows.  

 

 

Dividing (A-2.19) by (A-2.12), equation as follows is obtained.  

 

 

 

Here, using open circuit field time constant 

 

                             , 

 

(A-2.22) can also be expressed as follows.  

 

 

 

 

Here, since       means field voltage in per unit           efd , 

 

 

and                     means field flux linkage in per unit           fd , 

 

therefore, equation (A-2.23) can also be expressed as follows.  

fd 

fd0 

If 

If0 

0 Ld’ 

Vt0/I0 

0 Ld 

Vt0/I0 

Efd/Efd0 

If/If0      means field current in per unit            ifd , 

fd/fd0

∴   Ld Ld’ = Lmd       =                          (A-2.19) 
 Lmd Lℓfd 

Lmd + Lℓfd

Lmd
2

Lfd 

=      –              *                       (A-2.20) 
fd 

fd0 

If 

If0 

0 ( Ld  Ld’) 

  Vt0/I0 

Id

I0

fd = if  ( xd  xd’ ) id                              (A-2.21) 

=        +                                (A-2.22) 
Efd 

Efd0 

Rfd If 

Rfd If0 

s fd Lfd

Rfd fd0

Tdo’ = 
Lfd 

Rfd 

=    + Tdo’ s                        (A-2.23) 
Efd 

Efd0 

Rfd If 

Rfd If0 

fd

fd0
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[ Equation of Torque ]  Swing equation expresses “mass * acceleration = force” in rotating system, 

and is expressed by using rotating speed in per unit n as follows.   

 

 

 

Unit inertia constant M means the time while rotating speed rises zero to rated speed with giving 1 per unit 

acceleration torque, and is equal to 2H in JEC.   

 Meaning of mechanical input torque will be clear. Meaning of electric output torque will need some 

additional explanation.  

At first, it must be noticed that “power = torque * rotating speed”. Electric active and reactive output of 

synchronous machine can be expressed as follows ignoring damping torque.  

 

 

 

 

(A-2.4’) and (A-2.5’) can be expressed in per unit method as follows.  

 

 

 

“Power = torque * rotating speed” is expressed mathematically as follows.  

 

 

Substituting these three equations above into (A-2.26), equation as follows is obtained.  

 

 

Dividing both sides and adding damping term, equation of torque is obtained as follows.   

 

 

 Here exist relations between rotor position  ，generator internal phase angle  ，rotating speed n ，

speed deviation n . 

 

 

 

 

 

 

 

efd = if + Tdo’ s fd                                    (A-2.24) 

M s n =     = Tm  Te                  (A-2.25) 
M s2  

0 

Pe + j Qe = vt I
* = (vd + jvq) (id  iq) = (vd id + vq iq) + j (vq id  vd iq) 

∴  Pe = vd id + vq iq                                 (A-2.26) 

vd = q n  

vq = d n 

Pe = Te n 

Te n = q n id + d n iq 

Te = q id + d iq +                  (A-2.27) 
D s 

 0 

 =                                                (A-2.28) 
0 t +  

  0 

s  = 1 +    = 1 + n = n                          (A-2.29) 
s 

0 
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[ Fundamental Equations of Synchronous Machine ]  Thus, all fundamental equations of 

synchronous machine are obtained. They are summarized as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ Damper Windings and Damping Coefficient ]  Damping coefficient D is introduced in (A-2.27). 

Although damping torque varies by operational conditions and is difficult to evaluate, value at no load and 

no excitation can be calculated using induction motor theory.  

 

 

 

 

 

 

 

 

 

 

 Equivalent circuit of direct axis of synchronous machine is shown in A-Fig. 2.2. Relations as follows w 

exist between reactance, resistance, and synchronous machine constants.  

 

 

 

vt = vd + j vq                             (A-2.1’) 

i = id + j iq                                     (A-2.2’) 

 = d + j q                              (A-2.3’) 

vd = s d q s                                     (A-2.4’) 

vq = s q + d s                                    (A-2.5’) 

d = if  xd id                                   (A-2.14) 

q =   xq iq                                   (A-2.16) 

fd = if  (xd  xd’) id                             (A-2.21) 

efd = if + Tdo’ s fd                              (A-2.24) 

= Tm  Te                               (A-2.25) 
M s 

0 

Te = d iq q id +                              (A-2.27) 
D s 

0

Xℓ 

Xmd Xℓfd Xℓkd

Rkd/nEfd

V1 V2

Armature   Gap        Field      Damper

A-fig. 2.2 Equivalent circuit of direct axis 

Xd = Xℓ + Xmd                                    (A-2.28) 
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Here, 0 is angular frequency of power system. Since assuming no load and no excitation, Efd = 0.  

In calculation of induction motor torque, “secondary resistance by slip” is used. Here, decelerating 

torque is regarded positive, n is used as negative slip. If n is very small, blanch including Rkd /n can be 

regarded as open, and secondary voltage V2 can be calculated as follows.  

 

 

 

Induction motor torque is equal to secondary input power, and is expressed as follows.  

 

 

 

Here, assumed as V1
2 ≒ 1, damping coefficient is calculated as follows.   

 

 

 

 

 

 

To make damping coefficient large, conditions as follows are needed.  

 

     small  Xℓ       that is,      high   V2  

       large  Xd’ – Xd”   that is,          small  Xkd  

       large  Td”        that is,          small  Rkd  

            small  Xe         that is,      tight interconnection  

 

To understand that small Rkd results good damping, “proportional shifting of torque by secondary 

resistance” will be helpful. Field winding can be ignored in quadrature axis.  

Since actual value of damping coefficient D is not equal to that at no load and no excitation, the value 

must be calculated using minute model including damper windings, and is known as 5 or more by 

experience. Generator with small damping coefficient prone to cause power swing, and needs some 

consideration.  

Xd’ = Xℓ                                    (A-2.29) 
   1 

1/Xmd + 1/Xℓfd

Xd” = Xℓ +                                      (A-2.30) 
       1 

1/Xmd +1/Xℓfd +1/Xℓkd 

Td’ =     ( Xℓkd +          )            (A-2.31) 
  1 

0 Rkd 

     1  

1/Xmd +1/Xℓfd +1/Xℓ

V2 ≒       V1       
Xd’  Xℓ 

Xd’ + Xe 

Tk ≒         
V2

2 

Rkd/n 

Tk ≒ (V1         ) 2    n   
Xd’  Xℓ 

Xd’ + Xe 

 1 

Rkd

∴  D =     ≒ (V1         ) 2 
Tk 

n

Xd’  Xℓ

Xd’ + Xe

 1 

Rkd
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[ Ex. Quadrature Axis Damping Coefficient of a Thermal Generator ]  Although thermal 

generator’s rotor is a lumped iron and has no damper winding, eddy current on rotor’s surface performs the 

role of damper windings. However in quadrature axis, not only eddy current but also large loop current like 

field winding on direct axis appear, and the large loop does not contribute to damping. Considering the 

large loop current, quadrature axis transient reactance Xq’ and transient time constant Tq’ appear.  Machine 

constants are shown as follows.   

 

 

1. Considering Xq’  

 

 

 

 

 

2. Ignoring Xq’  

 

 

Since  Xℓfd is inifinite (open circuit), V2 = V1 . Then, 

 

 

 

Damping is far better by ignoring Xq’. While, which is the truth?  

 

 

 

 

 

 

 

 

 Voltage profile on disconnecting test will be a hint. As shown in A-Fig.2.3, just after disconnection from 

system, voltage behind subtransient reactance (Xd”≒Xq”): E” appears at terminal. As time goes by, 

terminal voltage shifts to voltage behind transient reactance: E’ , whose value is calculated as follows.  

 

 

In case of ignoring Xq’, Xq’ in equation above is displaced by Xq . Although terminal voltage sag must 

appear in a short time after disconnection by ignoring Xq’, such a sag never seen in existing thermal 

generators. Thus, Xq’ surely exists in thermal generator, and considering Xq’ results poor damping as 

example introduced in Fig. 6.1.   

Xq = 1.884,  Xq’ = 0.6,  Xq” = 0.238,  Xℓ = 0.178,  Tq” = 0.02 秒,  Xe = 0.3,  Vt = 0.97 

Xmd = 1.626,  Xℓfq = 0.56991,  Xℓkq = 0.06994,  Rkq = 0.02581,  V1 = 0.97 

Xmd = 1.626,  Xℓkq = 0.06230,  Rkq = 0.02954,  V1 = 0.97 

D ≒ (0.97 *             ) 2 *      = 19.43 
1.884  0.178

 1.884＋0.3 

  1 

0.02954

Vt
E” 

Efd

E’ 

I 

② 
① 

Vt

t 

AVR 
①

②

A-Fig. 2.3 Voltage profiles on disconnecting test by considering/ignoring Xq’ 

E’ = Vt + (Xd’ Iq + Xq’ Id) ＋ j (Xd’ Id  Xq’ Iq) 

D ≒ (0.97 *           ) 2 *      = 8.01 
0.6－0.178

 0.6＋0.3 

  1 

0.02581
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A-3 1 Machine and Infinite Bus Model 

[ Block Diagram of 1 Machine and Infinite Bus Model ]  Y-connection of trunk system, generator, 

and load necessarily appears when partial power system is aggregated. Load is included to infinite bus in 

the model as shown in A-Fig. 3.1. Oscillatory stability is not accurately analyzed by the model. However 

celebrating historical contribution in modern power system analysis by Heffron - Phillips and de Mello - 

Concordia, and considering some practical use of the model, the technique is minutely introduced hereafter.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector diagram of A-Fig. 3.1 is shown as A-Fig. 3.2. Here, an imaginary voltage behind guadrature axis 

reactance Eq is introduced. Phase angle  is defined as the angle made by Eq and Vb . Then,  

 

 

 

 

 

 

 

From real and imaginary parts of (A-3.1), equations as follows are conducted.  

 

 

 

 

 

Ｇ 

Ei∠     Vt∠t                    Vb∠0 
j Xe

generator  terminal    system reactance  infinite bus

A-Fig. 3.1 1 machine and infinite bus model 

0      Id                   fd            Eq           Efd 
Vq (d) 

Iq 

Vt

I 

Vb 

Q 

D 

Xd’Id (Xq-Xd’)Id (Xd-Xq)Id 

Vd

A-Fig. 3.2 vector diagram of 1 machine and infinite bus model in steady state 



Eq = fd + (Xq – Xd’) Id 

I = Id + j Iq =           = 
 Eq – Vb  

j (Xe + Xq) 

j Eq  Vb (sin  + j cos )

j (Xe + Xq) 

=                                             (A-3.1) 
fd + (Xq  Xd’) Id  Vb cos  + j Vb sin 

Xe + Xq 

Id =                                                   (A-3.2) 
fd  Vb cos 

Xe + Xd’ 

Iq =                                                   (A-3.3) 
Vb sin  

Xe + Xq 
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 Erasing If from (A-2.21) and (A-2.24), equation as follows is obtained.  

 

 

 

(A-2.21) is also be written as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relations above can be expresses as block diagram shown in A-Fig. 3.3. Since magnetic saturation 

appears only in direct axis in case of salient pole machine, saturation element should locate as the figure. 

Then, direct axis synchronous reactance must be unsaturated value. The block diagram preserves 

nonlinearity of synchronous machine, and was adopted in Training Hydropower Simulator in 1996.  

 

 

fd =                                                  (A-3.4) 
Efd  (Xd  Xd’) Id 

  1 + Tdo’ s 

n 
G(s) 

Tm 
 

 

1 

Ms

D 

0

s 

Vb sin 

Xe + Xq 




Te 

n 

 

× 

Vb cos

Xe + Xq

Saturation 

d Iq 

 Xd

Xd – Xd’ 





1 

Xe + Xd’

1 

1 + Tdo’ s 

 Xd – Xd’



F(s)

d 

×




Iq 

Id

×

 Xq q Id

q  



× 

 




√ × 

n

Vt

Excitation System
Efd 

fd 



If 


Speed Governor

A-Fig. 3.3 Block diagram of 1 machine and infinite bus model 

If = fd + (Xd – Xd’) Id                                   (A-3.5) 
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[ Linearization for small disturbance ]  Oscillatory stability studies system response by small 

disturbance. Small signal response of A-Fig. 3.3 can be conducted by making relations between 

differentials of variables. The procedures are as follows. Variables within { } are so small that they are 

usually ignored. Variables indicating operating point have suffix 0, and they are constants. Infinite bus 

voltage Vb is, of course, a constant.   

 Armature circuit is expressed as follows.  

 

 

 

 

 

 

From vector diagram, relations as follows are conducted.  

 

 

 

 

 

Their differentials are expressed as follows.  

 

 

 

 

Terminal voltage is expressed as follows.  

 

 

Its differential is expressed as follows.  

 

 

 

 

Field circuit is expressed as follows.  

 

 

 

 As swing equation, equation as follows are conducted from differentials of (A-2.15) and (付 2.16).  

 

 

 

Vd = { s d } q  { q s  }                       (A-3.6) 

Vq = { s q } d  { d s  }                       (A-3.7) 

d = If  Xd Id                                      (A-3.8) 

q =  Xq Iq                                         (A-3.9) 

Vt = Vd + jVq = Vb + j Xe I = Vb sin  + j cos  + j Xe (Id + j Iq) 

∴   Vd = Vb sin  Xe Iq                                    (A-3.10) 

Vq = Vb cos  + Xe Id                                   (A-3.11) 

Vd = Vb cos 0  Xe Iq                             (A-3.12) 

Vq =  Vb sin 0  + Xe Id                           (A-3.13) 

Vt
2 = Vd

2 + Vq
2 

2Vt0 Vt = 2Vd0 Vd + 2Vq0 Vq 

∴   Vt =    Vd +   Vq                            (A-3.14) 
Vd0 

Vt0 

Vq0

Vt0

fd = If  (Xd  Xd’) Id                               (A-3.15) 

Efd = If + Tdo’ s fd                                  (A-3.16) 

 = Tm + q0 Id + Id0 q d0 Iq  Iq0 d   (A-3.16) 
M s2 + D s 

0 
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 Variables except Vt , , fd , Tm , Efd are erased. At first using (A-3.7), (A-3.8), (A-3.13), Vq 

and d are erased. Then,  

 

 

Substituting (A-3.5) to equation above, If is erased and Id is expressed as follows.  

 

 

 

From (A-3.6), (A-3.9), and (A-3.12) Vd and q are erased as follows.  

 

 

 

 

Substituting (A-3.15) and (A-3.18) to (A-3.7), If and Id are erased and d is expressed as follows.  

 

 

 

Substituting (A-3.19) to (A-3.9), Iq is erased and q is expressed as follows.  

 

 

 

(A-2.4’) and (A-2.5’) are expressed as follows at operating point.  

 

 

 

(A-3.10) and (A-3.11) are expressed at operating point as follows.  

 

 

 

 

 

Substituting (付 3.18) - (付 3.25) to (付 3.17), equation as follows is obtained.  

 

 

 

Here, 

 

 

 

If  Xd Id =  Vb sin 0  + Xe Id 

Id =     δ +     fd                    (A-3.18) 
Vb sin 0 

Xd’ + Xe 

   1 

Xd’ + Xe

Xq Iq = Vb cos 0 δ  Xe Iq 

Iq =                                               (A-3.19) 
Vb cos 0 

 Xq + Xe 

d ＝        +     fd               (A-3.20) 
 Xd’ Vb sin0 

 Xd’ + Xe 

Xe 

Xd’ + Xe 

q =                                       (A-3.21) 
 Xq Vb cos 0 

 Xq + Xe 

d0 = Vq0                                             (A-3.22) 

q0 =  Vd0                                           (A-3.23) 

Id0 =                                                (A-3.24) 
Vq0  Vb cos 0 

  Xe 

Iq0 =                                                (A-3.25) 
 Vd0 + Vb sin 0 

   Xe 

 = Tm  K1 + K2 fd                   (A-3.26) 
M s2 + D s 

 ω0 
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Equations as follows conducted from (A-3.10) and (A-3.11) 

 

 

 

and relations 

 

 

 

are adopted and K1 is expressed as follows.  

 

 

 

K2 is expressed as follows.  

 

 

 

 Erasing If from equations (A-3.15) and (A-3.16), equation as follows is obtained.  

 

 

Substituting (A-3.18) to equation above, Id is erased and equation as follows is conducted.  

 

 

 

Here, 

 

 

 

 

 

 

 

K1 =        +          + 
 Vd0 Vb sin 0 

Xd’ + Xe 

 Xq Vq0 Vb cos 0 

Xe (Xq + Xe) 

Xq Vb
2 cos2 0

Xe (Xd’ + Xe) 

+        +          + 
 Vq0 Vb cos 0 

Xq + Xe 

 Xd’ Vq0 Vb cos 0

Xe (Xq + Xe) 

Xd’ Vb
2 sin2 0 

Xe (Xd’ +Xe) 

=                                      + 
Vb cos 0 {Xq Vb cos 0  (Xq + Xe) Vq0}

            Xe (Xq + Xe) 

Vb sin 0 {Xd’ Vb sin 0  (Xd’ + Xe) Vd0 }

            Xe (Xd’ + Xe) 

Vb sin 0 = Vd0 + Xe Iq0 

Vb cos 0 = Vq0  Xe Id0 

Eq0 = Vq0 + Xq Id0 

Iq0 = Vd0 /Xq 

K1 =       +         *                      (A-3.27) 
Eq0 Vb cos 0 

 Xq + Xe 

Xq  Xd’

 Xq 

Vd0 Vb sin 0

 Xd’ + Xe 

K2 =                                           (A-3.28) 
Vb sin 0 

Xd’ + Xe 

(1 + Tdo’ s) fd = Efd  (Xd  Xd’) Id 

fd =      Efd                         (A-3.29) 
 K3 

1 + Td’ s 

 K4 

1 + Td’ s

Td’ =      Tdo’                                 (A-3.30) 
Xd’ + Xe 

Xd + Xe 

K3 =                                               (A-3.31) 
Xd’ + Xe 

Xd + Xe 

K4 =      Vb sin 0                                (A-3.32) 
Xd  Xd’ 

Xd + Xe 
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At last substituting (A-3.6) and (A-3.7) to (A-3.14), equation as follows is obtained.  

 

 

 

Substituting (A-3.20) and (A-3.21) to equation above, q and d are erased and equation as follows is 

obtained.  

 

 

Here,  

 

 

 

 

 

 

Thus, all relations between Vt , , fd , Tm , Efd are obtained. Those relations are summarized as 

block diagram (A-Fig. 3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ Damping Torque Coefficient ]  In A-Fig. 3.4, electrical output change excluding damping D is 

expressed as follows.  

 

 

Here, KS and KD are functions of power swing angular frequency s , and called as synchronizing torque 

coefficient and damping torque coefficient respectively.  

Vt =     q +    d                          (A-3.33) 
Vd0 

Vt0 

Vd0

Vt0

Vt = K5  + K6 fd 

K5 =    *          *                     (A-3.34) 
Vd0 

Vt0 

Xq Vb cos 0

Xq + Xe 

Vq0

Vt0

K6 =    *                                         (A-3.35) 

Xd’ Vb sin 0

Xd + Xe 

Vq0 

Vt0 

Xe 

Xd’ + Xe 

Teo = K1  ＋ K2 fd = (KS + jKD)  

 
0 

M s2 + D s
K5

Tm 


Teo 
 



K1



K2 




K6  




fd 

1 

1 + Tdo’ s 

 K4

K3 F(s)
Efd

Excitation system

Vt

A-Fig. 3.4 Linearized block diagram 
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Transfer function from mechanical input change Tm to rotor angle change  in A-Fig. 3.4 is expressed as 

follows.  

 

 

 

In denominator of (A-3.36), real part means synchronizing torque and imaginary part means damping 

torque. Their sign mean as follows.  

If real part is positive, generator does not step out   Imaginary part is positive, oscillation decay. 

If real part is negative, generator does step out      Imaginary part is negative, oscillation grow. 

 Damping torque coefficient KD is calculated as follows.   

 

 

 

 

 

Therefore, synchronizing and damping torques are expressed as follows.  

 

 

 

Here, considering that gain of excitation system is F(s) = Fr + jFi  and ts = j, damping torque is 

expressed as follows.   

 

 

 

 

 =                Tm              (A-3.36) 
         1 

{KS M ωs/ω0} + j {KD + D ωs/ω0 }

fd = 
K3 F(s) {K5  + K6 fd}K4 

     1 + Td’ s 

∴   fd =                                (A-3.37) 
K3 F(s) K5K4 

1 + Td’ s  K3 F(s) K6

KS + j KD = K1 +         = K1 ＋                      (A-3.38) 
K2 fd 

 

 K2 {K3 F(s) K5K4 

1 + Td’sK3 F(s) K6

KD = K2                                                      (A-3.39) 
K3 K5 Fr (1 + K3 K6 Fr) + (K3 K5 Fr + K4) (Td’K3 Fi) 

      (1 + K3 K6 Fr) + (Td’K3 Fi) 
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A-4 1 Machine, 1 Load, and Infinite Bus Model 

[ Block Diagram of Small Variations ]  Power system that has a load between a generator and 

infinite bus as shown in A-Fig. 4.1 is studied. Most subsystems make the form when aggregated. Therefore, 

so as to the subsystem studied includes loads, 1 machine, 1 load, and infinite bus model is the simplest 

description. Influence by load branch impedance can be included into load's voltage sensitivity seen from 

load’s branching point. Although the model is added only 1 load from 1 machine and infinite bus model, 

analysis becomes highly complex.  

 

 

 

 

 

 

 

 

 

 Power flow conditions of A-Fig. 4.1 are listed up as follows.  

 

 

 

 

 

 

Small variations around operational point of these variables are expressed as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G 
Pg + jQg   Pg + jQg   Ps + jQs  

jXt                 jXs 
Vt∠t              Vb∠b             Vs∠0 

Pb + jQb jQc  

jQc  Pb + jQb 

A-Fig. 4.1 1 machine, 1 load, and infinite bus model 

Pg =         ,  Qt =                      ,  Qg = 
Vt Vb sin (tb) 

Xt 

Vt
2Vt Vb cos (tb)

Xt 

Vt Vb cos (tb)Vb
2

Xt 

Ps =       ,  Qs =         
Vb Vs sin b 

Xs 

Vb
2Vb Vs cos b

      Xs 

Pg = Pg     + Pg      + ( Qg +    ) (tb)             (A-4.1) 
Vt 

 Vt 

Vb

 Vb 

Vb
2

Xt

Qt = (Qt +  )   + (Qt  )   + Pg (tb)          (A-4.2) 
Vt

2 

Xt 

Vt 

 Vt 

Vt
2

Xt

Vb

 Vb

Qg = (Qg +  )   + (Qg   )   Pg (tb)         (A-4.3) 
Vb

2 

Xt 

Vt 

 Vt 

Vb
2

Xt

Vb

 Vb

Ps = Ps   (Qs  ) b                             (A-4.4) 
Vb 

 Vb 

Vb
2

Xs

Qs = (Qs +  )   + Ps b                            (A-4.5) 
Vb

2 

Xs 

Vb 

 Vb 
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Small variations of the load are expresses as follows by assuming voltage sensitivities of load’s active, 

reactive load and capacitor as  ,  ,  respectively.  

 

 

 

At load’s branching point, load balance conditions of small variations are expressed as follows.  

 

 

Thus, equations as follows are conducted.  

 

 

 

 

 

 

Using the equations, 2 small variations out of the all 4 can be erased. Since we want to know relations 

between the machine and the infinite bus, variations that should be erased are those of load’s branching 

point. Therefore, making calculation on lines, matrix in left side is translated to unit matrix, and the 

equations are expressed as follows, which is used to erase b and Vb .   

 

 

 

 

 

 

Substituting (A-4.8) to (A-4.1) and (A-4.2), b and Vb are erased and equations as follows is obtained. 

 

 

 

 

 

 

 

 

 

The generator is expressed as follows.  

 

 

 

Pb =  Pb    ， Qb =  Qb    ， Qc = Qc         (A-4.6) 
Vb 

 Vb 

Vb

 Vb

Vb

 Vb

Pg = Pb + Ps  ,   Qg = Qb + Qc + Qs 

    +     + Qg – Qs        PsPg + Pb  b          + Qg     Pg   t  
Vb

2 

Xt 

Vb
2 

Xs 

Ps  Pg       +   + Qg Qs + QbQc           – Pg        + Qg   
Vb

2 

Xt 

Vb
2 

Xs 

Vb

 Vb

= 

Vb
2

Xt

Vb
2

Xt

Vt 

 Vt 

1        0      b      A13     A14    t 

0        1               A23     A24 
Vb

 Vb

= 
Vt

 Vt

(A-4.7)

(A-4.8) 

Pg = {Pg A23 + (  Qt) (1 A13)} t + {Pg (1 + A24) (  Qt) A14}      
Vt

2 

Xt 

Vt
2

Xt

Vt

 Vt

Vt 

 Vt 
= Pg1 t + Pg2                                                       (A-4.9) 

Qt = {(Qg  ) A23 + Pg (1A13)} t + {Qt (1 + A24) + (1A24)Pg A14} 
Vt

2 

Xt 

Vt 

 Vt 

= Qt1 t + Qt2                                                      (A-4.10) 
Vt 

 Vt 

Eq = √{(Vt + Xq    )2 + (Xq   )2}    
Qt 

Vt 

Qt

Vt
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Using coefficients Pg1 ，Pg2 ，Qt1 ，Qt2 in (A-4.9) and (A-4.10), small variation of Id and Iq are expressed 

as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small variation of Vd and Vq are expressed as follows. 。 

 

 

 

 

Small variation of Pg and Qt are calculated as follows.  

 

 

sin (t) =   
Xq Pg 

Eq Vt 

Pg + j Qt = (Vd Id + Vq Iq) + j (Vq Id + Vd Iq)  

Id =              +   
Pg sin (t) 

Vt 

Qt cos (t) 

Vt 

Iq =           
Pg cos (t) 

Vt 

Qt sin (t) 

Vt 

Vd = Xq Iq   

Vq = √(Vt
2Vd

2) = fdXd’ Id   

Id =    
Pg1 sin (t) + Qt1 cos (t)Pg cos (t) + Qt sin (t)

                          Vt 
t  

+    
Pg2 sin (t) + Qt2 cos (t)Pg sin (t)Qt cos (t) 

                          Vt    

Vt 

 Vt 

+    
Pg cos (t)Qt sin (t)

           Vt 
    

Vt 

 Vt 
= Id1 t + Id2    + Id3                                    (A-4.11) 

Iq =    
Pg1 cos (t)Qt1 sin (t) + Pg sin (t) + Qt cos (t)

                          Vt 
t  

+    
Pg2 cos (t)Qt2 sin (t)Pg cos (t) + Qt sin (t) 

                          Vt    

Vt 

 Vt 

+    
Pg sin (t)Qt cos (t)

           Vt 
    

= Iq1 t + Iq2   + Iq3                                   (A-4.12) 
Vt 

 Vt 

Vd = Xq Iq                                           (A-4.13) 

Vq = fdXd’ Id                                    (A-4.14) 

Pg = Vd Id + Vq Iq + Id Vd + Iq Vq                    (A-4.15) 
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Substituting (A-4.9) - (A-4.14) to (A-4.15) and (A-4.16), relations as follows are obtained.   

 

 

 

 

 

 

Elements of the matrix above are expressed as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

By making calculation only on lines, matrix on the left side (A-4.17) can also be transformed to unit matrix 

as follows. Although same characters as (A-4.17) are used, of course, those values are different.   

 

 

 

 

 

 

Substituting (A-4.18) to (付 4.9), equation as follows is obtained.  

 

 

 

 

 

 

 

Qt = Vq IdVd IqIq Vd + Id Vq                    (A-4.16) 

B11      B12     t       B13      B14      

B11      B12               B23      B24     fd  
Vt

 Vt

=

B11 = Pg1Vd Id1Vq Iq1Id Xq Iq1 + Iq Xd’ Id1  

B12 = Pg2Vd Id2Vq Iq2Id Xq Iq2 + Iq Xd’ Id2  

B13 =    Vd Id3 + Vq Iq3 + Id Xq Iq3  Iq Xd’ Id3  

B14 =                   Iq  

B21 = Qt1  Vq Id1 + Vd Iq1 + Id Xd’ Id1 + Iq Xq Iq1   

B22 = Qt2  Vq Id2 + Vd Iq2 + Id Xd’ Id2 + Iq Xq Iq2  

B23 =     Vq Id3  Vd Iq3  Id Xd’ Id3  Iq Xq Iq3  

B24 =                    Id  

(A-4.17) 

1        0      t       B13       B14        

 0        1                B23       B24    fd 
Vt

 Vt

= (A-4.18) 

Pg = Pg1 ( B13  + B14    ) + Pg2 ( B23  B24   )   
Vt

 Vt

Vt

 Vt

= K1 + K2 Vt                                   (A-4.19) 

K1 = Pg1 B13 + Pg2 B23                                   (A-4.20) 

K2 = (Pg1 B14 + Pg2 B24) / Vt                              (A-4.21) 

Here, 
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Field flux is most fundamentally expressed as follows.  

 

 

 

 

 

 

 

 

 

 

From (A-4.18), relation as follows is directly obtained.  

 

 

 

 

 

 Relations (A-4.19) to (A-4.27) are synthesized into block diagram as A-Fig. 4.2, which has the same 

form of A-Fig. 3.4, but K parameters turn from constants defined by operating points to functions of load’s 

voltage sensitivity. Therefore, the model is an expansion of de Mello’s model. As to the slight different of 

expression on field, they are equivalent but the figure is more radical.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relations around synchronizing and damping torque coefficients Ks and Kd are obtained as follows.  

(1+ Tdo’ s) fd = Efd  (Xd  Xd’) Id   

= Efd  (Xd  Xd’) (Id1 t + Id2     + Id3 )   
Vt

 Vt

= Efd  (Xd  Xd’) { Id1 (B13  + B14 fd) + Id2 (B23  + B24 fd) + Id3 }  

∴   Tdo’ s fd = Efd  K3 fd  K4                        (A-4.22) 

K3 = 1 + (Xd  Xd’) (Id1 B14 + Id2 B24)                      (A-4.23) 

K4 = (Xd  Xd’) (Id1 B13 + Id2 B23 + Id3)                     (A-4.24) 

Vt = K5  + K6 fd                                  (付 4.25) 

K5 = Vt B23                                           (付 4.26) 

K6 = Vt B24                                           (付 4.27) 

Tm 1 

Ms

D 

0

s 

Gp(s) G(s) 

K5

K6 

K2 

K1

1 

Tdo’s K3 

F(s)

K4

 
 

 
 

 
 

Pg

  

fd 

Efd

Vt 

 
 





  

Excitation System

 
 

PSS

A-Fg. 4.2 Linearized block diagram of 1 machine, 1 load and infinite bus 

  

 

 

 

 

 

Here, 

Here, 
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Thus, synchronizing and damping torque coefficients Ks and Kd are obtained. Here, Gpss(s) means PSS 

gain translated to P type. Total transfer function from Tm to  is conducted as follows.  

 

 

 

 

 

 

 

 

Power swing angular frequency of the subsystem s is calculated by making denominator’s real part of 

(A-4.30) zero as follows.  

 

 

 

 

At any power swing angular frequency , damping torque coefficient of the subsystem Kd’ is conducted , 

by adding damping of the generator itself: Kd0 = D/0 , as follows.  

 

 

(K3 + Tdo’ s) fd =F(s) ( K5  + K6 fd + Gpss(s) Pg)K4    

∴   fd =                                               (A-4.28) 
{F(s) K5K4} F(s) Gpss(s) Pg 

K3 + Tdo’ s + F(s) K6 

Pg = K1  + K2 fd   

= (K1 +                     )  +          Pg   
 K2 F(s) K5K2 K4 

K3 + Tdo’ s + F(s) K6

K2 F(s) Gpss(s) 

K3 + Tdo’ s + F(s) K6 

∴   Pg =               

 K2 F(s) K5K2 K4  

K3 + Tdo’ s + F(s) K6 
K1 +   

1 +    
K2 F(s) Gpss(s) 

K3 + Tdo’ s + F(s) K6

=    
K1 {K3 + Tdo’ s + F(s) K6}K2 F(s) K5K2 K4 

K3 + Tdo’ s + F(s) K6 + K2 F(s) Gpss(s) 

= (Ks + j Kd )                                      (A-4.29) 

=    


Tm 
1＋                 (Ks + j Kd) 

0 

2 M + j D

0 

2 M + j D

=                                             (A-4.30) 
1  

( Ks－   ) ＋ j ( Kd ＋     ) 
2 M 

 0 

D

 0

0 Ks  s
2 M = 0   

∴   s = √( 0 Ks/M )                                    (A-4.31) 

Kd’() = Kd() + D/0                                (A-4.32) 
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Postscript 

The author has been astonished, because results by extended classic analysis methods based on simply 

aggregated power system model has given almost same results by modern simulation tool on detailed 

power system model. Predecessors who could not use modern simulation tools were forced to develop and 

use classic analysis methods, which are proved quite adequate if correctly used. Those classic and extended 

classic analysis methods can give engineers insights, which modern simulation tools cannot. Further saying, 

only those who use classic analyses methods have qualification for performing simulation, because 

simulation without physical insights always has risk for mistaking and overlooking the mistake. However, 

in spite of its importance, classic theories are going to lose their initiators. Buddhism had predicted such a 

condition of itself as Mappo, which means decline of the doctrines, dieing out of initiators, and only 

remaining of the Scriptures. Buddhism had also predicted that Mappo would go worse to Meppo, which 

means complete ruin of the doctrines and the Scriptures. The author has published the book as a Scripture, 

and hopes that it will survive as long as possible in Mappo era of electric power system engineering.  

  By the way, why such an important technology is going to ruin? One reason is thought that 

accomplishment of simulation tools has reduced importance of classic theories. Since everybody will 

believe simulation result, engineers do not necessarily have to know theories and physical meanings, only if 

simulation runs to the end. By Confucian criticism, simulation technology has ruined engineers who 

developed it. Thus, simulation is in all its glory today. But let us think a little while. Simulation tools does 

not run and give answer if users do not put in numerical data. Users are not always expert engineers, but 

only masters of TV game named simulation and inhabitants of virtual reality of simulation. It is quite 

possible that users cannot examine the adequacy of model and data to be put into the tools. In such a 

condition, who can rely on the answers given by such simulations? Those who trust upon them might be 

sleeping on volcano mouth.  

  Electric power system is metamorphosing. Today’s adequate model and data cannot always be adequate 

in tomorrow. The author think that now is the metamorphosing period. Two main incidents are progressing. 

One is retirement of aged thermal generation. Another is penetration of distributed generation. Both of the 

two will reduce load’s voltage stability, and as the results, reduce transient, dynamic, and frequency 

stability of interconnection. Traditional model and method have been proved not to tell the truth but to 

overlook and mislead. As the countermeasure, the author has introduced new model and method. The 

results were astonishing. Besides, although everybody understands that high penetration of RE whose 

output fluctuates by time will threaten voltage and frequency regulation in power system, quantitatively 

analyses seems to stagnate, therefore, the author by himself clarified. The contents were published as paper 

and introduced in the book.    

It is “Science of Philosophy” that understand why natural science has achieves such fine success. 

Science has its unique and brilliant method. To do along with scientific way is very likely to complete 

account responsibility. However in recent Japan, those who are regarded as scientists sometimes tell what 

are not scientific. Instant decision as active fault in nuclear plant by “Nuclear Regulation Committee” is 

typical, and members seem not to complete account responsibility for utilities and self-governing bodies. 
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But the criticism can be also applied to utilities. Have utilities taken scientific approach and completed 

account responsibility for an example in problems on RE integration? Among utilities, the author has 

continued to be scientific. Research fruits have been published as paper with peer review. Peer review is a 

strong proof that distinguishes those papers from pseudo-science. Announcement by private publishing or 

technical report without peer review is not validated and sometimes brings useless misleading. Therefore, 

paper with strong impact must be published as paper with peer review. Although utilities are mainly not 

sender but receiver of information, they should know the difference between papers (with peer review) and 

private publishing or technical reports.  

Contents dealt in the book are not in high level and not difficult. Ordinary scientists must reach the 

destinations. Then, why numerous employed scientists cannot reach the destinations before the author? It 

has been a question for the author long. However recently, it was recognized as possible as follows. That is, 

employed scientists do not like that now going research theme finishes. More epoch-making the research is, 

the research becomes higher “destructive creation”, which makes past efforts including outskirts nothing. 

By “destructive creation”, now going research come to its end and scientists must transfer another theme to 

live. Considerable effort will be needed. Treatment of employed scientists became worse than ever. 

Employment with period became ordinary. If the theme finished, extension of employing period may 

vanish. Therefore, the sense that available time of the theme should be made as long as possible can be 

understood. But it is national loss. They are non-employed scientists who break such sabotage by employed 

scientists. Of course, employed scientists oppose to new theories and so on. Contents of the book were also 

opposed. In Japan, the book may be burned like Giordano Bruno. Therefore, this English version is made. 

In near future, when the country will be in need, these technologies can be reverse-imported. That is 

Kurofune operation. The book will be uploaded in the author’s site.   

The book is Cassandra’s prediction. Prediction never works if the two conditions are not fulfilled. The 

first is to realize. The second is to be believed. Cassandra’s prediction lacked the second condition. Thus, 

Troy lost out to Greece and became a ruin. However, even Cassandra’s prediction may be believed outside 

of Troy. And ruin of Troy may be discovered by Schliemann. Really, the Cassandra’s prediction is already 

spreading in the world as US as the first. In near future, it will become new standard of electric power 

system engineering. Then, for honor of Japanese engineers, the author intends to leave some evidence that 

these studies ware performed in the past, although the fruits were executed by fire or buried underground. 

That is a small hope of the author.  
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